Sure, here's a simplified Octave code example to solve a differential equation using Euler's method with different step sizes and plot the results. In this code, we'll use a simple example of a differential equation with an initial condition. Replace the `f(x, y)` function with your specific equation. ```octave % Define the differential equation function f(x, y) function dydx = f(x, y) % Define your specific differential equation here, for example: dydx = -0.1 * y dydx = -0.1 * y; % Example equation: y' = -0.1 * y end % Initial values x0 = 0; y0 = 1; % Time interval target_x = 480; % Step sizes step_sizes = [240, 120, 60, 10, 5]; % Initialize arrays to store results x_values = cell(1, numel(step_sizes)); y_values = cell(1, numel(step_sizes)); % Loop through different step sizes for i = 1:numel(step_sizes) x = x0; y = y0; h = step_sizes(i); x_result = []; y_result = []; while x < target_x slope = f(x, y); y = y + h * slope; x = x + h; x_result = [x_result; x]; y_result = [y_result; y]; end x_values{i} = x_result; y_values{i] = y_result; end % Plot the results figure; for i = 1:numel(step_sizes) plot(x_values{i}, y_values{i}, 'DisplayName', sprintf('h = %d', step_sizes(i))); hold on; end xlabel('Time (seconds)'); ylabel('Temperature'); title('Euler''s Method with Different Step Sizes'); legend('Location', 'best'); grid on; hold off; ``` Make sure to replace the `f(x, y)` function with your specific differential equation. This code will help you solve the equation and plot the results for different step sizes.